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Abstract 

Many existing survivability mechanisms rely on sofi- 
ware-based system monitoring and control. Some of the 
software resides on application hosts that are not necessar- 
ily trustworthy. The integrity of these software components 
is therefore essential to the reliability and trustworthiness 
of the survivability scheme. In this paper we address the 
problem of protecting trusted software on untrustworthy 
hosts by software transformations. Our techniques include 
U systematic introduction of aliases in combination with a 
“break-down ” of the program control-jlow; transforming 
high-level control transfers to indirect addressing through 
aliased pointers. In so doing, we transform programs to a 
form that yields data j low information very slowly and/or 
with little precision. We present a theoretical result which 
shows that a precise analysis of the transformed program, 
in the general case, is NP-hard and demonstrate the appli- 
cabilip of our techniques with empirical results. 

1. Introduction 

In building survivable systems, many existing mecha- 
nisms [S, 91 rely on software-based network monitoring and 
management. Because some of the software components 
for the survivability mechanism will execute on hosts that 
are not necessarily trusted, the reliability and trustworthi- 
ness of the survivability mechanism is, therefore, of a great 
concern. 

In this paper, we address the problem of software pro- 
tection in a potentially malicious environment. We study 
this problem within the context of a survivable distributed 
system [9]. In this system, software probes are deployed 
onto network nodes for monitoring and control purposes. 
These probes are dispatched from a set of trusted servers. 
Each probe may employ different algorithms for monitor- 
ing local information and for communication with the serv- 
ers. For instance, different probes might use different data 
sequences, transmit with a different protocol, or monitor 
different information. To defeat this network-wide monitor- 
ing mechanism, and thereby obtaining control of the net- 
work, an adversary must deduce either the algorithm that 
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the probe uses when monitoring or the protocol with which 
the probe communicates with the server. Each of these 
attacks requires some level of understanding of the program 
behavior, which can be obtained through program analysis. 
This paper addresses one important aspect of software pro- 
tection-prevention of static analysis of programs, 

Static program analysis can reveal a great deal of infor- 
mation about the program such as the control flow and pos- 
sible uses of data quantities at run-time [ l l ] .  This 
information can be used to facilitate dynamic analysis of 
the program, and in some cases, aid direct tampering with 
the program. In this paper, we introduce a compiler-based 
approach to harden software against. static analysis. The 
basic approach consists of a set of code transformations that 
are designed to obstruct static analysis. The key difference 
between our approach and previously proposed code-obfus- 
cation techniques [4, 5, 71 is that our techniques are sup- 
ported by both theoretical and empirical complexity 
measures. Without the complexity measures, code-obfusca- 
tion techniques are at best ad hoc. 

The problem of software protection has been investi- 
gated in other studies. The notable ones include INTEL‘S 
IVK project [2], Collburg’s code obfuscation work [4, 51 
and mobile cryptography [20]. The IVK work coined the 
phrase Tamper Resistant Sopware. Their technique was 
novel but came with the price of considerable run-time cost. 
The mobile cryptography study proposed a technique to 
execute programs in an encrypted form. In its present form, 
the technique has limited applicability (e.g., rational func- 
tions). 

The approach described in this paper is developed 
based on well-understood programming language princi- 
ples, which serve as the basis for the complexity measures. 
We structure the paper as follows: In section 2, we present 
the system model and assumptions on which this work is 
based. Section 3 describes the basics of static analysis. Sec- 
tions 4 and 5 present the transformations to hinder control- 
flow and data-flow analysis. Sections 6 discusses theoreti- 
cal and practical foundations of the proposed scheme. Sec- 
tions 7 presents our implementation and experimental 
results. 
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2. The system model 

In this section we describe the assumptions and the 
system model to set the context for discussion. Our system 
consists of a set of computing hosts connected via a net- 
work and a set of communicating processes running on 
these hosts. The hosts are divided into two categories: 
application hosts and survivability control hosts. The pro- 
cesses relevant to the survivability control mission are the 
control processes running on the control hosts and the 
probe programs running on the application hosts. The 
probes are responsible for local monitoring and reconfigu- 
ration. The control processes collect monitoring informa- 
tion from the probes, conduct network-wide analysis, and 
issue reconfiguration commands to the probes if real-time 
changes are deemed necessary. An overview of the system 
architecture is depicted in Figure 1. 

Several characteristics and assumptions about the sys- 
tem are important for the discussion. They are listed below: 

Trusted control servers: In our system, the control 
servers and the control processes running on top of them are 
presumed trusted. 

Trusted network communications: We assume the 
network communications between the control processes and 
the software probes are trusted. 

Diversity in the probing mechanism: In this system, 
the probing mechanism makes use of two forms of diversity 
that are essential to the approach detailed in later sections. 
They are temporal diversity and spatial diversity. Temporal 
diversity takes the form of periodic replacement of the probes 
with a new version dispatched from the trusted control 
servers. Spatial diversity refers to the installation of different 
versions of probes across the network. Each version of the 
probes may use a different probing algorithm, a different 
protocol to communicate with the control server, and may 
appear to have a different operational semantics [21]. The 
use of diversity here makes it essential for an adversary to 
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Figure 1 : A controlled network 

learn the program algorithm in order to launch an intelligent 
tampering or impersonation attack. 

High level of interactions between the probes and the 
control processes: While executing on a remote host, the 
probes maintain a high level of interaction with its control 
server via predetermined protocols. It is assumed that the 
probes perform integrity checks whose results are verified 
by the control servers. The checking mechanisms are also 
installation-unique in that each probe program may employ 
a set of different checks. It is not the task of this paper to 
devise the checking mechanisms. It suffices to state that the 
integrity checks may be performed on the software itself as 
well as its executing environment. The result of the integrity 
checks establishes the basis of the probe’s identity and 
authenticity. 

In this work, we are primarily interested in defending 
against sophisticated attacks that fall under the category of 
intelligent tampering and impersonation attacks. 

Intelligent Tampering. Intelligent tampering refers to 
scenarios in which an adversary modifies the program or data 
in some specific way that allows the program to continue to 
operate in a seemingly unaffected manner (from the trusted 
server’s point of view), but on corrupted state or data. 

Impersonation. An impersonation attack is similar to 
intelligent tampering in that the attacker seeks to establish a 
rogue version of the legitimate program. The difference lies 
in that the former attempts to emulate the behavior of the 
original program, while the latter aims to modify the program 
or its data directly. 

It should be noted that denial-of-execution attacks are 
not considered here. In this problem context, denial-of-exe- 
cution produces straightforward symptoms that can be 
readily identified by the trusted server (e.g. loss of commu- 
nication). Unlike denial-of-execution, an intelligent tamper- 
ing or impersonation attack may not be immediately 
obvious; if the attacker has detailed knowledge of what the 
software is supposed to do  and the appropriate privilege to 
instantiate a malicious copy, he can replace the original pro- 
gram and make the replacement virtually undetectable. 
Such attacks therefore have the potential to inflict substan- 
tial harm-the adversary could manipulate the program to 
perform seemingly valid but malicious tasks. 

With the diversity scheme and the integrity checks in 
store, a successful intelligent tampering or impersonation 
attack requires knowledge about the probe algorithm and 
the communication protocol in order to bypass or defeat the 
checking mechanism. This in turn requires information 
about the program semantics, and it is this information that 
we endeavor to protect. For example, consider the follow- 
ing code segment: 
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int a = functionl( ) ;  

int b = function2( ) ;  

Check-for-intrusion(&a, &b); 

p = &a; 
integrity-check(p); 

If an adversary were to tamper with the 
Checkfbr-intrusion() function, he or she needs to under- 
stand whether and how the Checkfbr-intrusion() function 
changes the values of a and b, and whether a or b will be 
used later in the program. Without this knowledge, his 
action can be revealed when integrit)l-check(p) is called. 

Our premise is that an adversary aiming to tamper with 
or impersonate the program in an intelligent way must 
understand the effect of his action, and this boils down to an 
understanding of the program semantics. One way this 
understanding can be acquired is through program analysis. 
This paper deals with obstruction of program analysis, in 
particular, static analysis of programs. Our approach con- 
sists of a framework of code transformations designed to 
increase the difficulty of static program analysis, and that is 
described in the remaining sections. 

3. Static analysis of programs 

Static analysis refers to techniques designed to extract 
information from a static image of a computer program. 
Static analysis is often more efficient than analyses per- 
formed dynamically such as simulated execution. 

From the software-protection point of view, static anal- 
ysis could yield useful information for targeted manipula- 
tion of software. Consider again the code example in the 
last section. A use-def analysis [ I l l  of the code segment 
would quickly reveal that a possible definition of the data 
quantity a in function Checkjor-intrusion() will be propa- 
gated to a use (through its alias p )  in function 
integrity_check(). Based on this knowledge, an adversary 
could then perform specific modification to 
Checkfbr-intrusion() so long as he leaves the semantics of 
a intact for its later use. 

Static analysis can be conducted in a manner that is 
either sensitive or insensitive to the program control-flow. 
Flow-insensitive analysis is generally more efficient at the 
price of being less precise [ 1 I ,  141. 

A flow sensitive analysis first constructs the Control- 
Flow Graph (CFG) of the program. Such a graph consists of 
nodes which are basic blocks and edges that indicate con- 
trol transfers between blocks. The analysis then proceeds to 
solve the data-flow problem based on the CFG. 

It is important to note that control-flow analysis is the 
first stage of the analysis-it provides information on the 
program call structure and control transfer that is essential 
for subsequent data-flow analysis. Without this informa- 

tion, data-flow analysis is restricted to the basic-block level 
only and will be fundamentally ineffective for programs 
where data usage is dependent on program control-flow. 

The technical basis of our approach to defeating static 
analysis is to transform the program control-flow to a 
highly data-dependent nature; that is, the control-flow and 
data-flow analysis are made co-dependent. The results of 
this co-dependence are: (1 )  increased complexity of both 
analyses; and ( 2 )  reduced analysis precision. 

4. Degeneration of control-flow 

In a normal program, determining the CFG is a 
straightforward operation when branch instructions and tar- 
gets are easily identifiable-it 'is a linear operation of com- 
plexity O(n), where n is the number of basic blocks in the 
program. 

The first set of code transformations that we employ 
modify high-level control transfers to obstruct static detec- 
tion of the program CFG. We perform this transformation in 
two steps. In the first step, high-level control structures are 
transformed into equivalent if-then-goto constructs. This 
transform is illustrated in Figure 2 in which the sample pro- 
gram in Figure 2(a) is transformed into the structure in Fig- 
ure 2(b). 

Secondly, we modify the goto statements such that the 
goto target addresses are determined dynamically. In C, we 
implement this by replacing the goto statements with an 
entry to a switch statement, and the switch variable is com- 
puted dynamically to determine which block is to be exe- 
cuted next. The transformed code (based on the code 
segment of Figure 2(a)) is depicted in Figure 3. 

With the above transformations, direct branches are 
replaced with data-dependent instructions. As a result, the 
CFG that can be obtained from static branch targets degen- 
erates to a flattened form shown in Figure 3. It can be 
shown that this degenerate form is equivalent to the control- 
flow perceived by a flow insensitive analysis [14]. Without 

int a ,  b; 
a = l  ; 

whi le(a<lO) (  
b=a+b; 
if(b>lO) 

a++; 
1 
use(b);  

b=2; 

b--. 

(a) 

L1: 11 (! (a < 1 0 )  ) "i go10 L4 

, l ( ! ( b > l O ) )  

L4: use (b) 

Figure 2: Dismantling high-level constructs 
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I 
swVar = 1 

a:l; 
b.2; 
swVar = elSe 
2;  

Figure 3: Transforming to indirect control transfers 

knowledge of the branch targets and the execution order of 
the code blocks, every block is potentially the immediate 
predecessor andfor successor of every other block. 

In the absence of the branch-target information, the 
complexity of building the static CFG is determined by how 
easy it is, at each branching point, to discern the latest defi- 
nition of the switch variable. This is exactly a classical use- 
n-def data-flow problem [ l l ] .  Note that we have trans- 
formed the control-flow analysis into a data-flow problem. 
The complexity of data-flow analyses is influenced by vari- 
ous program characteristics such as aliasing [ 111. We show 
in the next section how manipulation of data flow charac- 
teristics can yield additional complexity for data-flow anal- 
ysis and ultimately render static analysis an extremely 
difficult problem, if not entirely infeasible. 

5. Data-flow transformations 

After the transformations described in Section 4, the 
complexity of building the CFG now hinges on the com- 
plexity of determining branch targets, which is in essence a 
use-n-def data-flow problem. Many classical data-flow 
problems are proven to be NP-complete[l2, 161. A funda- 
mental difficulty that data-flow analysis must deal with is 
the existence of aliases in the program. Alias detection is 
essential to many data-flow problems. For example, in 
order to determine the live definition problem, a data-flow 
algorithm must understand the alias relationships among 
variables since data quantities can be modified when 
assignments are performed on any aliased names. 

Our second set of transformations focuses on the intro- 
duction of non-trivial aliases into the program to influence 
the computation and the analysis of the branch targets. 
These transformations include the following techniques: 

Index computation of branch targets: Consider the 
code segment in Figure 4(a). A use-n-def analysis to ana- 
lyze where the switch variable swVur (contains branch tar- 
get information) is defined is straightforward (the dashed 

line indicates a use-def information chain). Now consider 
the code segment in Figure 4(b) in which a global array 
“global-array” is introduced and the value of swVar is 
computed through the elements of the array VI() and $20 
indicate complex expressions of subscript calculation). 
Replacing the constant assignment in Figure 4(a) with indi- 
rect accesses of the array implies that the static analyzer 
must deduce the array values before the value of swVur can 
be determined 

Aliases through pointer manipulation: We introduce 
aliases in the following steps: 

In each function, we introduce an arbitrary number of 
pointer variables. We insert artificial basic blocks, or code in 
existing blocks, that assign the pointers to existing data 
variables including elements of the global array. 

We replace references to variables and array elements 
with indirection through these pointers. Previously 
meaningful computations on data quantities are replaced 
with semantically equivalent computation through their 
aliased names (assignments to the global-urruy elements 
may appear as assignments to a pointer variable) 

As much as possible, uses of the pointers and their 
definitions are placed in different blocks. This is to introduce 
difficulties for the use-n-def analysis. 

Some of the basic blocks will execute, and others are 
simply dead code. Since the static analyzer does not know 
which blocks actually execute, and since definition of the 
pointers and their uses are placed in different blocks, the 
analyzer will not be able to deduce which definition is live 
at each use of the pointer-all pointer assignments will 
appear live. 

For example, a static analysis performed on the code 
segment in Figure 5(a) can quickly determine that only the 
second definition of the pointer variable p will carry to 
point A during execution. However, if the basic block in 
Figure 5(a) is decomposed into two blocks and the transi- 
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I I 

defined as 4 
b = b t a ;  
if ( ! (b> 1 0) ) ............ 

swVar = 5; ...... ...... 
....... else ..... ........... 

Va I '$, ............. 

1 
goto switch 

int global-array[ TI 
........... 
..................................... 

delined as ? 
defin'ed as ? 

._.." b = b t a ;  

else 

if ( !(b>10) ) ..... ._." 
...... 

...'._I 
swVar = gIobaI-array-lfl( ) I ;  

..... 
s wVa r = g lo ba I-a r ra y [I2 ( ) I ;  ........ ..... 

1 goto switch I (b) 

Figure 4: Example illustrating dynamic computation of branch targets 

tion between blocks is obfuscated using our flatten-and- 
jump technique as depicted in Figure 5(b), the static ana- 
lyzer will report both alias relations <*p, a> and <*p, b> 
because it does not know which block executes first. 

Figure 6 illustrates example transformations as applied 
to the program in Figure 2(a). The result of the transforms 
is the following: a static analyzer will report imprecise alias 
relations that suggest that the global array is altered, and 
that its contents do not remain static. With sufficient alias 
introduction, the analysis will resolve an array element to a 
large set of possible values. This in turn implies that, at 
each use, the switch variable that controls the flow of exe- 
cution in the degenerate form of the program can take on a 
large set of values. 

It can be argued that if an adversary can capture the ini- 
tial value of swVur, he can then find the first block to be 
executed, and from there identify each subsequent block. 
While this may allow the adversary to recover some of the 
original control flow, it is important to note that this analy- 
sis requires an interpretation of every preceding block in 
order to recover the current basic block-an effort that 
exceeds the cost of most static analyses. 

It can also be argued that simulation is required only 
once for each block, and as a result, the complexity of ana- 

'p = a; 'p = b; 
b = 3; 

p = a; 
a = a t b ;  
p = b; 

b = 3; 

<*p,  b> <'p, a> <*p,  b> 

Figure 5: Introducing aliases through pointers 

lyzing such a program lies somewhere between static analy- 
sis and a full execution trace, with analysis time 
proportional to the number of blocks in the program. One 
way to defeat this analysis is to unroll loops and introduce 
semantically equivalent basic blocks that will be chosen 
randomly during execution. Consequently, the effort 
required in recovering the program control-flow will be 
comparable to a full simulation. In addition, the initial com- 
putation of swVur can be erased from memory once it is 
used to avoid unnecessary exposure of information. 

6. Complexity evaluation 

We have thus far conjectured that the difficulty of dis- 
cerning indirect branch target addresses is influenced by 
aliases in the program. In this section, we support this claim 
by presenting a proof in which we show that determining 
precise indirect branch addresses statically is a NP-hard 
problem in the presence of general pointers. 

6.1. A NP-hard argument 

Theorem 1: In the presence of general pointers, the 
problem of determining precise indirect branch target 
addresses is NP-hard. 

Proof Our proof consists of a polynomial time reduc- 
tion from the 3-SAT problem to that of determining precise 
indirect branch targets. This is a variation of the proof orig- 
inally proposed by Myers in which he proved that various 
data--flow problems are NP-hard in the presence of aliases 
[ 121. Landi later proposed a similar proof to prove that alias 
detection is NP-hard in the presence of general pointers 
[ 161. The detailed reduction can be found in other extended 
documents [21,22]. 

The NP-hardness proof establishes that the problem of 
statically determining branch target addresses is NP hard in 
the presence of general pointers. This result applies to the 
set of general programs (with general pointers), which, at 
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the first brush of reaction, may not be the same as the set of 
programs produced by our transformations. We must fur- 
ther establish that the set of transformed programs does not 
represent a restricted class of programs and that the proof 
also applies. We approach this as follows. 

Assuming the set of general programs is A and the set 
of programs produced by our transformations is A' ,  to show 
that A' is not a restricted subset of A (with respect to the NP 
hard proof) it suffices to show that 

1) There is a polynomial time mapping for every 
instance a in A to a functionally equivalent instance in A' .  

2) If there is a polynomial-time algorithm to resolve 
indirect branch targets for any instance in A',  then this algo- 
rithm can be used to resolve indirect branch targets for 
instances of A. 

Establishing a polynomial time mapping from 
instances of A to instances of A' is straightforward; this 
mapping consists of exactly the code transformations we 
described in Section 4 and 5. 

Because the transformations introduced in Section 4 
and 5 are semantics-preserving transformations, an algo- 
rithm that resolves indirect branch targets for an instance in 
A' will by definition resolve indirect branch targets for its 
functionally equivalent instance in A. More intuitively, if all 
the indirect branching targets for an instance in A' are 
resolved to direct jumps, it is a polynomial-time task to 
restore the original control-constructs (from the flattened $- 
else-goro constructs) and therefore deduce the branch tar- 
gets for the original program in A. 

The reduction from 3-SAT does not make use of any 
program characteristics other than multiple levels of pointer 
dereferencing and conditional branches. The transforma- 
tions described in Section 4 and 5 preserve the presence of 
conditional branches and arbitrary levels of pointers and 
pointer dereferencing. From an intuitive standpoint, this 

suggests that the reduction from 3-SAT also stands for the 
transformed program. 

6.2. Complexity evaluation for approximation 
analysis methods 

While the NP-hard result bode well for the alias-based 
code transformations, we still need to evaluate our 
approach against possible heuristics and approximation 
methods. In this section, we explore the effect of two analy- 
sis methods: brute-force search and alias approximations. 

Brute-force search method. To determine the execu- 
tion order of the code blocks that appear in the degenerate 
form of the program, an adversary might employ a brute- 
force search method in which all combinations of the code 
block ordering are explored. This is a naive exhaustive 
search heuristic in which each block is considered equally 
likely to be the immediate successor of the current block 
(including the current block itself). The time complexity of 
such a brute-force method is O(nk), where I I  is the number 
of distinct program blocks and k is the number of blocks 
that will be executed. Clearly, this represents the worst-case 
time complexity and is extremely inefficient when the value 
of n and k are sufficiently large. 

Alias-detection approximation methods. The prob- 
lem of precise alias detection in the presence of general 
pointers and recursive data structures is undecidable [ 1 I ,  
161. In practice, however, approximation algorithms are 
often used [ 111. An alias analysis algorithm may analyze 
aliases intra-procedurally as well as across procedural 
boundaries. 

Intra-procedural alias analysis requires as input the 
alias set holding at the entry node of the procedure, the alias 
set propagated back from any procedure called within the 

I , int 'pl,;2, 'p3; , 

b.2; 
p i  = &array; 
swVar = array[f()]; 

Y 
i f  ( !(a < 10)) p 2 t t ;  b--.  a t t ;  

else swVar = array[f()]; 

p2 = &array[23]; ' p 3 t t ;  ' ( p l t 1 4 )  = 0; b = b t a; 
sw~ar=array[ f ( ) l ;  if ( !  (b>iO)) swVar = array[f()] ;  swVar = array[f()]; 

use (b); 9 
- 

Figure 6: An example transform using pointer manipulation 
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current procedure, and the alias processing functions (trans- 
fer functions) of each pointer assignment statement. Well- 
known data-flow frameworks [ I I ,  171 exist for handling 
intra-procedural alias analysis. They are divided into flow- 
sensitive and flow-insensitive methods. Flow-sensitive 
methods make use of control-flow path information, and 
are more precise than flow-insensitive methods. The trans- 
formations described in Section 4 and 5 produce a degener- 
ate form of static control flow. As a result, flow-sensitive 
analysis conducted on this form of control flow loses preci- 
sion advantage it has over the flow-insensitive methods. 
Figure 7 illustrates such an example. 

The CFG in Figure 7 shows that the assignment q = &c 
overwrites the alias relation <*q, b>, and p = &b overwrites 
<*p, D. A flow-sensitive alias analysis algorithm, con- 
ducted on the control flow in Figure 7(a), would result in an 
alias set (<*a, c>, <*p, d>, <*q, c>} for this segment. The 
degenerate control flow in Figure 7(b) essentially repre- 
sents the set of all possible paths with these blocks. Even a 
flow-sensitive analysis algorithm at best must conclude 
with the alias set <*a, c>, <*p, a> <*p, d>, <*q, c>, <*q, 
b>}. Horwitz [ 141 presented a definition of precise flow- 
insensitive alias analysis. Under this definition, the flow- 
sensitive analysis result obtained from the CFG in Figure 
7(b) is exactly the same result as a precise flow-insensitive 
algorithm would have concluded with the CFG in Figure 
7(a). We thus conjecture that, with the degenerate form of 
control flow, a flow-sensitive analysis can be no more pre- 
cise than its flow-insensitive counterpart. 

The transformations presented in this paper are intra- 
procedural transforms in the sense that they do not affect a 
control-flow analysis on the procedural level. However, an 
inter-procedural alias analysis is inherently based on the 
result of intra-procedural alias analysis, therefore its preci- 
sion suffer likewise. A step beyond the current scheme is to 
generalize the transformations to produce degenerate 

PCGs, which will further degrade analysis results. A 
detailed discussion on this topic as well as an in-depth study 
of the complexity of existing alias analysis frameworks can 
be found in [21]. 

7. Implementation and Performance Results 

We implemented the transformations in a source trans- 
lator for ANSI C in  the SUIF programming environment 
[ I ] .  In our implementation, we developed compiler passes 
for the code transformations. Each pass traverses the SUIF 
representation and performs the desired modifications. The 
exact transformations are determined by a random seed: 
that is, the resulting program is different for each compila- 
tion. For example, the layout of the global array, the exact 
percentage of the control-transfers that are transformed, and 
the number of dead blocks that are added are all determined 
by a random number generated from the seed. 

We tested performance results obtained with experi- 
mental transformations on the SPEC95 benchmark pro- 
grams. Of issue here are three measures: Run-tinze 
performance of the transformed program, perforniance of 
static analysis, and precision of static analysis. 

By run-time performance of the transformed programs, 
we mean the execution time and the executable object size 
after transformation. These measures reflect the cost of the 
transformation. By performance of static analysis, we mean 
the time taken for the analysis tool to reach closure and ter- 
minate. A related but equally important criterion is the pre- 
cision of static analysis, which indicates how accurate the 
analysis result is compared to the true alias relationships. 

7.1. Performance of the transformed program 

The following data was obtained by applying our trans- 
forms to SPEC95 benchmark programs. Three SPEC pro- 

I 

Statement 

Figure 7: Effect of the degenerate control flow on alias analysis 
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Figure 8: Execution time (non- 
optimized) 

10% 3 0 %  5 0 %  8 0 %  

Percentage of branches transformed 

Figure 9: Execution Tim e (optim ized) 

10% 30% 5 0 %  8 0 %  

Percentage of branches transformed 

grams are used in this experiment, Compress95, Go and LI. 
Go is a branch-intensive implementation of the Chinese 
board game GO. Compress95 implements a tightly-looping 
compression algorithm, and LI is a typical input-output 
bound program for a LISP interpreter. These programs are 
standard benchmarks used in the compiler community. 
They embody three major classes of high-level language 
constructs that are widely used in general programming. It 
would be more satisfying, however, to test our results on 
the class of networking programs for which this solution 
was intended. But in the absence of that, we believe that 
these test programs are good representatives of real-world 
programs. 

We conducted experiments on both optimized (with the 
gcc -0 option) and non-optimized versions of the programs. 
The experiments were executed on a SPARC server. The 
experimental results show that, in both cases, the perfor- 
mance-slowdown increases exponentially with the percent- 
age of transformed branches in the program. On average, 
the performance speedup due to optimization is signifi- 
cantly reduced when a more substantial portion of the pro- 
gram is obfuscated. 

This is an encouraging result; it is highly suggestive 
(albeit not conclusive) that our transformations consider- 
ably hindered the optimization that the compiler is able to 
perform. 

The performance of Go and li were similar for both 
optimized and non-optimized code. Of the three original 
programs, compiler optimization performed best on Com- 
press-a whopping 80% decrease in the execution time due 
to optimization. However, as can be seen in Figure 9, our 
transforms removed significant optimization potential from 
Compress; the execution speed of the transformed and opti- 
mized Compress diverges most significantly from the per- 
formance of the original optimized program. As Compress 
is a loop-intensive program, it is likely that certain analyses 
that enabled significant loop or loop kernel optimization 
were no longer possible after our transform was performed. 

The object size of the three benchmarks grew with 
increased branch replacement (see Figure 10 and Figure 
11). Go, a branch-intensive program, shows the largest code 
growth with our transform. For 80% replacement of direct 
branches, the executable size increased by a factor of 3 for 
Go and Li, and by roughly 10% for Compress. Compress 
contains relatively fewer static branches, and this resulted 
in less potential for code growth with the transform. 

We believe that these results are representative of many 
programs. It appears that, on average, replacing 50% of the 
branches will result in an increase of a factor of 4 in the 
execution speed of the program. At the same time, the pro- 
gram will nearly double in size. 

The object size of the three benchmarks grew with 
increased branch replacement (see Figure 10 and Figure 

Figure 10: Executable Size (non- 
optim ized) 

10% 3 0 %  5 0 %  8 0 %  

Percentage of branches transformed 

Figure 11: Executable Size (optimized) 
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11). Go, a branch-intensive program, shows the largest code 
growth with our transform. For 80% replacement of direct 
branches, the executable size increased by a factor of 3 for 
Go and Li, and by roughly 10% for Compress. Compress 
contains relatively fewer static branches, and this resulted 
in less potential for code growth with the transform. 

We believe that these results are representative of many 
programs. It appears that, on average, replacing 50% of the 
branches will result in an increase of a factor of 4 in the 
execution speed of the program. At the same time, the pro- 
gram will nearly double in size. 

In these experiments, we used a random algorithm to 
choose which branch to transform. An obvious future 
improvement is to employ intelligence to do the following: 
a) identify the regions of the program that require greater 
protection from static analysis, and b) selectively perform 
transformation on the less-often-executed branches for bet- 
ter performance penalty. Trade-offs between these two cri- 
teria need to be considered for the most effective solution. 

7.2. Performance and precision of static analysis 

In this experiment, we test our techniques against exist- 
ing analysis tools and algorithms. The state-of-the-art anal- 
ysis tools include the NPIC tool [13] and the PAF toolkit 
[ 181. They both implement an inter-procedural, flow-sensi- 
tive algorithm. Both NPIC and PAF perform control-flow 
analysis exactly once with no further refinement on the 
flow graph. 

In our experiments, PAF successfully analyzed small 
sample programs (run to completion) but failed to handle 
some of the large programs included in the SPEC bench- 
marks. The failure characteristics were inconclusive as to 
whether the analysis failed due to difficulties incurred in the 
alias analysis or an inability of handling the size of the orig- 
inal input program. The test cases that we successfully 
completed with PAF included a wide range of sample pro- 
grams that contain extensive looping constructs and branch- 
ing statements. In each of these test cases, PAF terminated 
reporting the largest possible number of aliases in the pro- 
gram; in other words, it reported that any pointer variable is 
possibly aliased to every variable that ever appeared on the 
left hand side of an assignment statement. Because of the 
size of the test programs, we observed negligible differ- 
ences in the pre- and post-transformation analysis time. The 
experience with the PAF tool, albeit with limited test cases, 
indicated that PAF failed to resolve aliases across the flat- 
tened basic blocks, and that our technique of making data- 
flow and control-flow co-dependent presents a fundamental 
difficulty that existing analysis algorithms lack the sophisti- 
cation to handle. 

NPIC implements a slightly more aggressive algorithm 
that includes features such as function-pointer analysis. It 

performs an iterative analysis interleaving the inter-and 
intra-procedural analysis. Every time new aliasing informa- 
tion is generated by an intra-procedural phase, it is propa- 
gated to its successor functions which then repeat their 
intra-procedural analysis, and so on, until the alias set con- 
verges. Unfortunately, IBM no longer maintains and dis- 
tributes the tool. The experience with NPIC was therefore 
limited to analytical experiments with the NPIC algorithm. 

A limited number of experiments with the NPIC algo- 
rithm were conducted on small programs. These experi- 
ments, to the extent that a semi-automated analysis would 
allow, revealed that little accuracy was achieved when the 
analysis terminates. 

In a particular instance where index computation and 
aliasing were used to compute branch targets, NPIC started 
out indicating that the elements of the global array could 
contain a number of possible values. As the iterations went 
on, this information was never refined. Rather, alias rela- 
tions identified in later iterations increased the set of possi- 
ble values that the array elements were deemed to have. 
The algorithm eventually terminated and claimed that the 
elements of the global array were changed an arbitrary 
number of times, and that they could contain arbitrary val- 
ues. Computations involving the array elements were 
deemed unanalyzable. This in turn implied that the indirect 
branching targets cannot be determined precisely. Alias 
information propagation among those blocks therefore did 
not get easier and alias relations were never refined. 

8. Conclusion 

The problem of protecting trusted software from 
untrustworthy hosts, is important for many critical func- 
tions in modern networks. Consider, as an example, distrib- 
uted intrusion detection systems in which parts of the ID 
programs need to operate on untrustworthy hosts. Serious 
consequences will arise if these programs were the targets 
of malicious attacks and were compromised. 

In this paper, we considered one significant class of 
attacks, namely those based on static analysis of the binary 
form of the program. We presented a strategy for defeating 
analysis by tightly coupling the control flow and the data 
flow of the program. Since data-flow analysis of acceptable 
precision is dependent on the control-flow information, this 
approach is capable of expanding analysis time consider- 
ably and reducing the precision of the analysis to useless 
levels. The theoretical bound that we have established 
shows that analysis of programs that have been transformed 
in this manner is NP hard. 

We have developed a practical instantiation of the 
transformation in the form of a compiler for ANSI C. The 
compiler makes a number of changes to the program source 
including: degeneration of the program control Row; the 
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systematic and general creation of aliases; and the introduc- 
tion of data-dependent branches. We note that these trans- 
formations are not dependent on a C-like pointer 
paradigm-they can be applied to any intermediate repre- 
sentation where explicit memory references exist. 

In proof-of-concept experiments that we have con- 
ducted on sample programs, the transformed versions 
defeat currently available static-analysis tools. Although 
such experiments are not and could never be definitive evi- 
dence, we regard these results as promising indications that 
we have a practical approach to defeat static analysis. 

We note that the described transformations produce 
programs with a considerable level of code diversity (trans- 
forms are randomly chosen on a per compilation basis). 
Such programs, when deployed at various points in a net- 
work, are highly resilient to class attacks since most class 
attacks exploit common software flaws. 

It is important to note that the purpose of this work is to 
eliminate the possibility that a static analysis can be used to 
deduce useful information for software tampering or imper- 
sonation. In other words, the optimal result is that there 
should be no efficient way to analyze the program other 
than an actual execution. We also note that many forms of 
dynamic program analysis make use of static information 
[3, lo], and the techniques described in this paper will be 
helpful in defending against these forms of analyses. 
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